Spaghetti Hole Passive Treatment System SRI O&M TAG Project #58 Request #1 OSM PTS ID: PA-64

<u>Requesting Organization:</u> Altoona Water Authority <u>Requesting Organization Representative:</u> Amy Sipes <u>Municipality/County:</u> Altoona, Blair County <u>Dates of work performed:</u> 5/10/2019 to 7/11/2019

<u>Initial Request</u>: On 9/10/2018, the Altoona Water Authority (AWA) requested assistance to evaluate and make recommendations about properly maintaining the Spaghetti Hole passive treatment. They indicated that a portion of the water was bypassing the system. The evaluation and recommendations were to be conducted in conjunction with Saint Francis University staff and students.

<u>Observations and Identified Needs</u>: Water quality passing through the Successive Alkalinity Producing System (SAP) (aka Vertical Flow Pond (VFP)) outlet was good. The inlet to the SAP was eroded but stable, likely due to ATV activity. All stop logs for the SAP outlet were in place. It appeared that the SAP outlet weir had been reconfigured and the staff gauge had not been adjusted to the new weir height. Access road repair including erosion control is an ongoing maintenance need at this site as the road is very long. Overflow from the SAP bypassing treatment was the primary water quality related concern.

<u>Work Completed:</u> SAP stop logs were removed from the Agri Drain box to determine if adjusting head pressure would allow an increased amount of flow to pass through the SAP. After two days, there was no longer an overflow at the treatment system bypass. To further assess the media, test pits were dug in four locations throughout the pond. Most of the organic media appeared to be in good condition. Much of the limestone was clean enough to have void space, with only a few places close to appearing impermeable due to iron and aluminum precipitates. The tests pits were filled and some of the stop logs were re-installed to allow water to fill the pond.

<u>Current Recommendations</u>: Confirm the elevation of the staff gauge at the SAP outlet is adjusted to the proper elevation relative to the new weir height for flow measurements. Continue to monitor the SAP water level to determine the proper amount of stop logs required to maintain water levels on top of the media but not bypassing the SAP overflow pipe. Based on available data, even when the current system is net alkaline, aluminum solids are usually present at the system effluent.

<u>Future Considerations:</u> When the stop logs in the Agri Drain box are configured to direct flow through the SAP treatment media, the overall water chemistry is typically alkaline with low iron and aluminum concentrations. The system effluent chemistry (Point SHSEDOUT) indicates that the system can neutralize all the acidity (e.g., the effluent typically has a circumneutral pH and negative acidity) but has difficulty settling sufficient aluminum solids to consistently result in concentrations below 1 mg/L. This system was constructed in 2002 and for a system of this age, typically alkaline effluent is a noteworthy success. However, the test pits did document that plugging of the limestone layer with aluminum (whitish) solids is occurring to a degree. In order to provide the most cost-effective enhancement of the existing system, a proposed conceptual design has been developed to rehabilitate the system using the existing components in their current configuration with improvements that will continue to neutralize acidity and precipitate aluminum while providing enhanced solids removal. The improvements discussed below are noted on the Conceptual Design prepared as part of this report.

The sedimentation pond is relatively small and is essentially filled with sediment and vegetation. To provide additional settling capacity, it is recommended that the pond be cleaned to restore at least the original water volume and if no liner is present and soil conditions indicate that leakage would not be anticipated, the bottom should be excavated to provide additional solids storage volume. In order to help increase settling effectiveness, two floating widowed baffle curtains should be installed. Material removed from the sedimentation pond will be placed in the proposed dewatering basin.

The existing SAP pond has a compost layer approximately one foot to two feet thick with overlying sediment. The purpose of a compost layer in a SAP of this vintage is to cause ferric iron (Fe^{+3}) to be reduced to the ferrous form (Fe⁺²) to keep iron from precipitating within the underlying limestone layer. Since 2016, the average total iron concentration in the raw (influent) water has been less than 1 mg/L which does not justify the presence of organic material. The test pits excavated in 2019 show a notable accumulation of aluminum solids in the limestone, which is not unexpected as the presence of organic material does not prevent the precipitation of aluminum solids. It is recommended that the compost be removed and placed as a soil amendment in the area around the treatment system and that the first 1-2 feet of limestone be washed to remove as much of the aluminum solids as feasible. The underdrain piping is PVC and, if exposed, would likely be broken and need significant repairs. Several temporary wash basins could be constructed within the SAP to facilitate cleaning of the limestone that appears to be AASHTO #3 size aggregate. Care should be taken during the washing process to capture the precipitate in the wash basins and transfer the material into the dewatering basin as possible and avoid concentrating the material in the lower portion of the limestone and around the underdrain pipes. The cleaned limestone would be placed back into the SAP and leveled. The limestone cleaning is expected to remove the majority of metal precipitates but some metal solids would remain. Geochemical modeling using PHREEQ-n-AMDTreat beta v6.0 indicate the presence of metal solids enhances metal removal through sorption. Any underdrain pipes that may be damaged during limestone cleaning should be repaired using flexible rubber couplers and pipe of similar size and type. Over time it is expected that the solids formed by the proposed automatic flushing limestone-only vertical flow pond upstream of the SAP pond will clog the limestone in the SAP and that the SAP will function primarily as a settling pond. The size of the existing SAP pond is conducive for this purpose it will provide over four times the settling capacity as the existing sedimentation pond. The existing SAP pond emergency spillway would then function as a primary spillway.

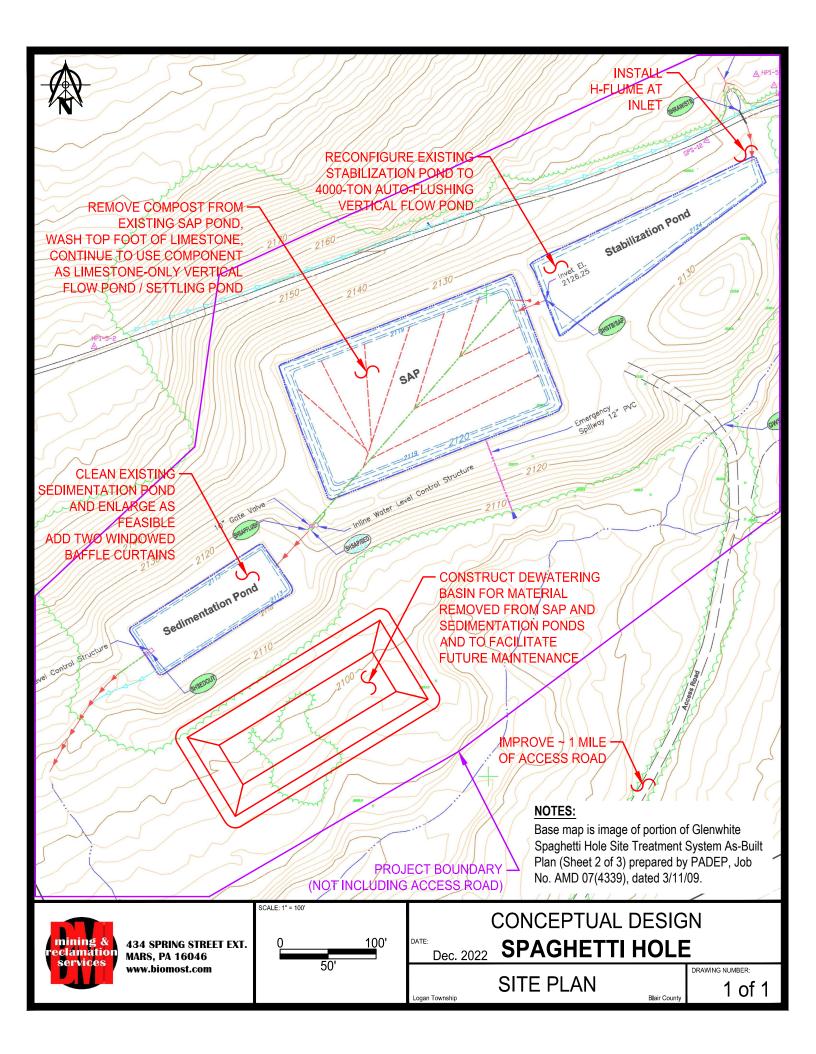
Raw mine drainage entering the stabilization pond has moderate acidity (69 mg/L average) and aluminum (8 mg/L) with iron and manganese typically less than 1 mg/L and 4 mg/L, respectively. As there is typically no appreciable change in chemistry from the influent (Point SHRAW/STB) to the outlet of the stabilization pond (Point SHSTB/STB), and there is not a flow control device or sufficient volume to stabilize flow rate, it is proposed to reconfigure the initial treatment component, Stabilization Pond, to function as an automatic-flushing vertical flow pond (AFVFP). This will require minimal excavation as the elevation and size of current stabilization pond is conducive for gravity flushing to the SAP pond. Installing an AFVFP upstream of the SAP pond will result in accumulation of aluminum solids on top of the SAP limestone, however, the limestone layer will help to filter solids and allow equipment access for future maintenance activities. With limited excavation and grading, the existing stabilization pond should be able to accommodate approximately 4,000 tons of limestone. This would enhance system performance and extend the projected system life over 20 years.

The proposed maintenance activities will result in excess material. As noted above, organic material may be spread around the treatment system as a soil amendment. Other material removed from the existing treatment components will be placed in a newly constructed dewatering basin that will have sufficient capacity to facilitate the proposed improvements as well as future maintenance work. Flow measurements taken downstream of the proposed AFVFP will not accurately represent the actual inflow rate, therefore a H-flume is proposed at the inlet of the treatment system. The access road is about one mile long and needs significant drainage improvements,

grading, and surfacing. There are other passive treatment systems located between the Spaghetti Hole system and the public road that will benefit from improving the existing access road. The existing system is over 20 years old (constructed in 2002), therefore, the proposed improvements are recommended to be implemented in the near future to avoid a degradation of effluent water quality.

Attachments: Conceptual Design Site Plan, Site Overview Photo, AMDTreat Cost Calculations.

Photo Log



Top Left: Water level of the SAP dropped after lowering the stop logs.
Top Right: Stop logs removed from SAP outlet to lower the water level in the SAP pond.
Bottom Left: Much of the limestone was observed to still have void space, with only a few places appearing to be impermeable due to Fe and Al precipitates.
Bottom Right: The staff gauge was improperly set for the new weir elevation at the SAP outlet.

Passive Treatment Operation & Maintenance Technical Assistance Program Funded by PA DEP Growing Greener Stream Restoration Incorporated & BioMost, Inc. December 2022 O&M TAG 4 1117

Top Left: 10" PVC valve requires valve tool to open (standard 2" handle).
Top Right: Top of limestone layer with compost removed shows aluminum precipitates.
Bottom Left: Test pits revealed a 1" = 8" layer of precipitates overlaying 1.0' - 1.5' layer of compost with relatively clean limestone for a 20-year-old system.
Bottom Right: Close up of limestone layer with aluminum precipitates below compost layer.

Project O&M TAG

Site Name Spaghetti Hole

AMOTREAT

AMD TREAT AMD TREAT MAIN COST FORM

Costs	AN	ID T	REAT MAIN
Passive Treatment	<u>A</u>	<u>s</u>	
Vertical Flow Pond			\$0
Anoxic Limestone Drain			\$0
Anaerobic Wetlands			\$0
Aerobic Wetlands			\$0
Manganese Removal Bed			\$0
Oxic Limestone Channel			\$0
Limestone Bed	1	0	\$264,400
BIO Reactor			\$0
Passive Subtotal:			\$264,400
Active Treatment			
Caustic Soda			\$0
Hydrated Lime			\$0
Pebble Quick Lime			\$0
Ammonia			\$0
Oxidants			\$0
Soda Ash			\$0
Active Subtotal:			\$0
Ancillary Cost			
Ponds	1	0	\$58,235
Roads	1	0	\$39,583
Land Access			\$0
Ditching			\$0
Engineering Cost	1	0	\$99,644
Ancillary Subtotal:			\$197,462
Other Cost (Capital Cost)			\$136,000
Total Capital Cost:			\$597,862
Annual Costs			
Sampling			\$0
Labor			\$0
Maintenance			\$0
Pumping			\$0
Chemical Cost			\$0
Oxidant Chem Cost			\$0
Sludge Removal			\$0
Other Cost (Annual Cost)			\$0
Land Access (Annual Cost))		\$0
Total Annual Cost:			\$0
	1	0	

HMDIREH	
500.00	gpm
122.30	gpm
0.70	mg/L
0.20	mg/L
7.50	mg/L
3.30	mg/L
3.80	su
0.40	mg/L
1.20	mg/L
68.60	mg/L
495.40	mg/L
0.00	mg/L
10.00	С
0.00	uS/cm
0.00	mg/L
0.01	mg/L
18.3	tons/yr
	122.30 0.70 0.20 7.50 3.30 3.80 0.40 1.20 68.60 495.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total Annual Cost: per 1000 Gal of H2O Treated \$0.000 Company NameStream Restoration Inc.ProjectO&M TAGSite NameSpaghetti Hole

COMMENTS:

Raw water characteristics are based on monitoring 1/11/2016 through 10/12/2021 downloaded from www.datashed.org (accessed December 2022).

Chemistry is raw (Point SHRAW/STB) n=18

Flow measured at SAP (Point SHSAP/SED) n=14

Typical flow = Average

Design flow = Maximum

9.9 inch pipe used for AFVFP for 12 inch pipe.

Access road improvements representative, some areas will need more grading and/or aggregate than others.

Engineering Costs set at 20% (10% design, 6% permitting, 4% construction oversight)

Project O&M TAG

Site Name Spaghetti Hole

Ģ

Printed on 01/19/2023

Limestone Bed Name Convert Stabilization Pond to AFVFP

U Opening Screen Water Parameter				
	1. Tons of Limestone Needed 2,943	LSB Based on Acidity Neutralization		
	2. Tons of Limestone Needed 7,035	C LSB Based on Retention Time 6. Ret	ention Time hours	
Influent Water Parameters	3. Tons of Limestone Needed 11,386	C LSB Based on Alkalinity Generation Rate 7. Alkalinity Gene		
that Affect LSB	4. Tons of Limestone Needed 4,000	2	one Needed 4,000 tons	
Calculated Acidity	5. Tons of Limestone Needed 1,297	C LSB Based on Dimensions 9. Length at Top of Freeboard	ft 10. Width at Top ft of Freeboard ft	
56.93 mg/L				
Alkalinity	11. % Void Space of LS. Bed 43.00 %	29. Clearing and Grubbing?	LSB Sizing Summaries	
0.40 mg/L	12. System Life years	O 30a. Land Multiplier ratio	48. Length at Top of Freeboard 266.78 ft	
	13. Limestone Purity 85.00 %	O 30b. Clear/Grub Acres acres	49. Width at Top of Freeboard 143.39 ft	
C Calculate Net	14. Limestone Efficiency %	31. Clear and Grub Unit Cost \$/acre	50. Freeboard Volume 3,982 yd3	
Acidity	15. Density of Loose Limestone 94.30 lbs/ft3	32. Nbr. of Valves 0 nbr	51. Water Surface Area 33,477 ft2	
(Acid-Alkalinity)		33. Unit Cost of Valves 3500.00 \$ ea.	52. Total Water Volume 2,366 yd3	
Enter Net Acidity			54. Limestone Surface Area 30,451 ft2	
manually Net Acidity	17. LS Placement Unit Cost 5.00 \$/yd3	C AMDTreat Piping Costs	55. Limestone Volume 3,142.06 yd3	
(Hot Acidity)	Run of Slope Rise of Slope	34. Total Length of Effluent / Influent Pipe	56. Excavation Volume 5,508.9 yd3	
68.60 mg/L	18. Slope of Pond Sides 2.0 : 1	35. Pipe Install Rate ft/hr	57. Clear and Grub Area 0.0 acr	
	19. Freeboard Depth 3.00 ft	36. Labor Rate \$/hr	58. Liner Area 5,535.0 ft2	
Design Flow	20. Free Standing Water Depth 2.0 ft	37. Segment Len. of Trunk Pipe	59. Theoretical Retention Time 9.09 hrs	
500.00 gpm	24. Limestone Depth 3.0 ft	38. Trunk Pipe Cost \$/ft	LSB Cost Summaries	
Typical Flow	25. Excavation Unit Cost 10.00 \$/yd3	39. Trunk Coupler Cost \$/coupler	60. Siphon System Cost 18,000 \$	
122.30 gpm Total Iron	23. Siphon System Cost 18000.0 \$	40. Spur Cost \$/ft	61. Limestone Cost 160,000 \$	
0.70 mg/L		41. Spur Coupler Cost \$/spur	62. Limestone Placement Cost 15,710 \$	
Aluminum	Liner Cost	42. "T" Connector Cost \$/T coupled		
7.50 mg/L	O No Liner			
Manganese	C Clay Liner	43. Segment Len. of Spur Pipe ft/pipe seg.		
3.30 mg/L	11. Clay Liner Unit Cost \$/yd3	44. Spur Pipe Spacing ft	\$	
	12. Thickness of Clay Liner ft	Custom Piping Costs	Ψ	
	C Synthetic Liner	Length Diameter Unit Cost	67. Pipe Cost 15,600 \$	
Record Number	13. Synthetic Liner Unit Cost \$/yd2		68. Total Cost 264,400 \$	
1 of 1				
		47. Pipe #3 ft in s	[▶]	

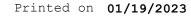
AMD TREAT

Project O&M TAG

Site Name Spaghetti Hole

AMD TREAT

PONDS


AMDTREAT

Pond Name Dewatering Basin							
	Pond Design Based On:	23. Revegetation Cost 3000.00	\$/acre				
	C Retention Time	24. Cost of Baffles	\$				
	1. Desired Retention Time hours		_				
	3. Sludge Removal Frequency times/year	Calculated Pond Dimensions per Po	nd				
Opening Screen Water Parameters	4. Titration?	25. Length at Top of Freeboard 235	ft				
	5. Sludge Rate gal sludge/	26. Width at Top of Freeboard 96	ft				
Influent Water Parameters	6. Percent Solids	27. Freeboard Volume 6,837	yd3				
that Affect		28. Water Volume 5,262	yd3				
Ponds	7.Sludge Density Ibs./gal	29. Estimated Annual Sludge	yd3/yr				
Calculated Acidity	Pond Size	30. Volume of Sludge	yd3/ removal				
Alkalinity	8. Pond Length at Top of Freeboard 235.000 ft	per Removal 31. Excavation Volume3.26	acre ft				
0.40 mg/L	9. Pond Width at Top of Freeboard 96.000 ft	32. Excavation Volume 5,262	yd3				
	Run Rise	33. Clear and Grub Area 0.77	acres				
C Calculate Net	10. Slope Ratio of Pond Sides 2.0 : 1	34. Liner Area 0	yd2				
Acidity (Acid-Alkalinity)	11. Freeboard Depth 2.0 ft	35. Calculated Retention Time 35					
Enter Net Acidity	12. Water Depth 10.0 ft	Ponds Sub-Totals per Pond					
manually	13. Excavation Unit Cost 10.00 \$/yd3	36. Excavation Cost 52,62	7 \$				
Net Acidity (Hot Acidity)	14 Total Length of Effluent	37. Pipe Cost 2,50	0 \$				
68.60 mg/L	/ Influent Pipe	38. Liner Cost	0 \$				
	15. Unit Cost of Pipe 25.00 \$/ft Liner Cost	39. Clearing and Grubbing Cost 2,33	0\$				
Design Flow	No Liner	40. Revegetation Cost 77	<mark>6</mark> \$				
500.00 gpm Typical Flow	Clay Liner	41. Baffle Cost	<mark>0</mark> \$				
122.30 gpm	16. Clay Liner Unit Cost \$/yd3						
Total Iron	17. Thickness of Clay Liner ft	42. Estimated Cost 58,23	5 \$				
0.70 mg/L	O Synthetic Liner						
Aluminum	18. Synthetic Liner Unit Cost \$/yd2						
7.50 mg/L Manganese	☑ 19. Clearing and Grubbing?	_					
3.30 mg/L	© 20. Land Multiplier 1.50 ratio						
Record Number	C 21. Clear/Grub Acres acres						
1 of 1	22. Clear and Grub Unit Cost 3000.00 \$/acre	Ð					

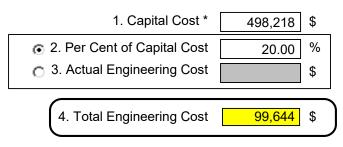
Printed on **01/19/2023**

Project O&M TAG

Site Name Spaghetti Hole

AMD TREAT

ROADS



Road Name Access Road Improvements 1. Road Length 5300 | ft 14. Reveg Unit Cost \$/acre 3000.00 2. Road Width ft 15. Culvert Unit Cost \$/ft 12 50.00 3. Road Depth 16. Culvert Length ft 0.33 ft 200 **Roads Sub-Totals** 4. Aggregate Unit Cost 35.00 \$/yd3 17. Road Surface Cost 27,207 \$ 5. GeoTextile Length 0 ft 18. GeoTextile Cost 0 \$ 6. GeoTextile Unit Cost 0.00 \$/yd2 1,500 19. Silt Fence Cost \$ 7. Length of Silt Fence ft 500 10,000 20. Culvert Cost \$ 8. Unit Cost of Silt Fence \$/ft 3.00 21. Revegetation Cost 876 \$ **9**. Surveying? 0 22. Survey Cost \$ 10. Survey Rate acres/day 23. Clear and Grub Cost 0 \$ 11. Survey Unit Cost \$/day □ 12. Clearing and Grubbing? 24. Total Cost 39,583 \$ 13. Clear and Grub Cost \$/acre Record Number 1 of 1

Company Name <u>Stream Restoration Inc.</u> Project <u>O&M TAG</u>

Site Name Spaghetti Hole

AMD TREAT ENGINEERING COST

* Total Capital Cost minus Engineering and Land Access Capital Cost

Project O&M TAG

Site Name Spaghetti Hole

AMD TREAT

OTHER COST

AMOTREAT

OTHER COST Oher Cost Name Spaghetti Hole Improvements				AWDTREP	
	A. Description of Item	B. Unit Cost Per Item	C. Quantit	D. y Total Item Cost	E. Capital Cost Annual Cost
1.	Clean sediment pond (CY)	10.00	1000	10,000	 Capital Cost C Annual Cost
2.	Excavate sediment pond (CY)	10.00	800	8,000	 Capital Cost C Annual Cost
3.	Remove SAP sediment (CY)	10.00	1000	10,000	 Capital Cost C Annual Cost
4.	Remove SAP compost (CY)	10.00	2000	20,000	 Capital Cost C Annual Cost
5.	Clean SAP Limestone (T)	8.00	3500	28,000	Capital Cost
6.	Inlet flume with approach (EA)	1.00	7000	7,000	 Capital Cost C Annual Cost
7.	Misc pipe and materials (JOB)	1.00	10000	10,000	 Capital Cost C Annual Cost
8.	Mob/Demob (JOB)	20,000.00	1	20,000	 Capital Cost C Annual Cost
9.	E&S Controls (JOB)	23,000.00	1	23,000	 Capital Cost C Annual Cost
10.		0.00	0	0	 Capital Cost C Annual Cost
11.		0.00	0	0	Capital Cost
12.		0.00	0	0	 Capital Cost C Annual Cost
13.		0.00	0	0	Capital Cost
14.		0.00	0	0	Capital Cost
15.		0.00	0	0	Capital Cost C Annual Cost
-	Record Number 1 of 1	Curent Capital Cost 136 Current Annual Cost	,000 \$ 0 \$	Total Capital Co Total Annual Co	·